
   

 
 

MATLAB Marina: Creating and Modifying Arrays 
 
Student Learning Objectives 
After completing this module, one should: 
1. Be able to create and use MATLAB 1D arrays. 
2. Be able to index MATLAB 1D arrays. 
 
Terms 
scalar, 1D array, vector, index, indexing (extracting, slicing), colon operator, colon notation, 
concatenation 
 
MATLAB Functions, Keywords, and Operators 
:, length, size, numel, zeros, ones, min, max, mean, sum, cumsum, find, end, ( ), [ ] 
 
MATLAB Arrays 
A scalar is a single element. A 1D array or vector is a one-dimensional collection of data of the 
same data type. For example, a 1D array v = [v1, v2, …, v10] of ten integers could either be a row 
(1 by 10) or column (10 by 1) of ten integer values. 
 
Colon Operator 
The MATLAB colon operator allows one to create a range of values without using a loop 
structure; K:L is the same as [K, K+1, K+2, …, L] and K:D:L is the same as [K, K+D, K+2D,…, L]; the 
default increment is one. Figure 1 shows two examples of using the colon operator to create 
ranges of numbers. 
 

Figure 1. Creating Ranges of Numbers using the Colon Operator 
 
Creating 1D Arrays 
There are several ways to create 1D arrays in MATLAB: entering the values directly enclosed by 
square brackets (row elements separated by commas or spaces and elements in columns 
separated by semicolons), using the colon operator, using built in MATLAB functions such as 
linspace, zeros, ones, and rand, and created as the result of operations on 1D arrays.   
 
Figure 2a shows examples of creating 1D arrays by directly entering the values and using the 
colon operator. Figure 2b shows examples of creating 1D arrays using built in MATLAB 
functions. The linspace function takes three arguments (start value, end value, and number 
of points) and creates a row array with the specified number of values equally spaced from the 
start value to the end value. 

>> 1:1:8 
ans = 1  2  3  4  5  6  7  8 
>> 0.0:0.25:2.5 
ans =  0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 
>> 2.5:-0.5:-1.5 
ans =  2.50  2.00  1.50  1.00  0.50  0  -0.50  -1.00  -1.50 



   

2 
 

 

Figure 2a. Creating 1D Arrays Using Direct Entry and the Colon Operator 
 

Figure 2b. Creating 1D Arrays Using Built in Functions 
 
Multiple 1D arrays can be concatenated to create larger 1D arrays. Concatenation joins the 
series of values in the provided order. The values to the right are appended to the left end of 
the first set of values. MATLAB’s 1D array concatenation syntax is similar to creating arrays 
using direct entry. Row arrays are concatenated by providing the list of 1D row arrays enclosed 
in square brackets separated by spaces or commas. Column arrays are concatenated by 
providing the list of 1D column arrays enclosed in square brackets separated by semicolons. 
 

Figure 2c. 1D Array Concatenation 
 
Indexing 1D Arrays 
The individual items in a 1D array are called elements and the position in the 1D array is called 
the index. For example, the 1 by 6 array vec = [13, 7, -5, 2, 63, 8] contains the 
element 13 at index 1, the element 7 and index 2, and the element 8 at index 6. Individual 
elements of a 1D array can be indexed (accessed) using the array name and the index (position) 
enclosed in parentheses. Multiple elements that are successive can be indexed by a providing 
range of indexes. Indexing arrays is also called slicing, accessing, and extracting. 
 
Figure 3 illustrates how to index and save the fourth element and the third through sixth 
elements of the 1D array. 
 

>> emptyVector = [] 
emptyVector = [] 
>> vecDirect = [3, 7, -1, 2] 
vecDirect = 3  7  -1  2 
>> vecColon = 0:2:20 
vecColon = 0  2  4  6  8  10  12  14  16  18  20 

>> vecLinspace = linspace(0,5,10); 
vecLinspace = 0  0.5556  1.1111  1.6667  2.2222  2.7778  3.3333    
3.8889  4.4444  5.0000 
>> rowVecZeros = zeros(1,5); 
rowVecZeros = 0  0  0  0  0 
>> colVecOnes = ones(7,1); 
>> vecRand = rand(1,100); 

>> row1 = [2, 4, -6]; 
>> row2 = [1, 3, 5]; 
>> row = [row1 , row2] 
row = 2     4    -6     1     3     5 
>> col1 = [2; 4; -6]; 
>> col2 = [1; 3; 5]; 
>> col = [col1 ; col2]; 



   

3 
 

 

Figure 3. Indexing 1D Arrays 
 
Modifying and Removing Elements of Arrays 
A portion of an array can be modified by specifying the range to modify and providing the 
appropriate number of new values; i.e. index the places in the array to be modified and assign 
new values to those places. Elements can be added to the beginning or end of a 1D array using 
concatenation. Elements can be removed from an array by specifying the range to remove and 
assigning the empty vector to the specified elements; i.e. index the places to be removed and 
assign the empty vector to those places. 
 

Figure 4. Modifying and Removing Elements of Arrays 
 
Useful Reserved Words and Built in Functions for Arrays 
The numel function returns the number of elements in an array. The length and size 
functions provide information about the dimensions of a variable. The length function 
returns the value of the largest dimension. For a 1d array, the length is the same as the number 
of elements. The size function returns the dimensions of the variable. 
 
The end reserved word, when used in an indexing expression, is equivalent to the length of the 
dimension it is being used to index, i.e. the last index along that dimension. Using the colon 
operator by itself when indexing is equivalent to using 1:1:end along that dimension.  
 

Figure 5. Examples of Using length function, end keyword, and Colon Operator 
 

>> vec = [13, 7, -5, 2, 63, 8]; 
>> v4 = vec(4) 
v4 = 2 
>> v3to6 = vec(3:1:6) 
v3to6 = -5  2  63  8 

>> vec = [13, 7, -5, 2, 63, 8]; 
>> vec(2) = 0 
vec = 13  0  -5  2  63  8 
>> vec(4:end) = zeros(1,3) 
vec = 13  0  -5  0  0  0 
>> vec(3) = [] 
vec = 13  0  0  0  0 

>> vec = [13, 7, -5, 2, 63, 8]; 
>> len = length(vec) 
len = 6 
>> vec4toEnd = vec(4:end) 
vec4toEnd = 2  63  8 
>> vecCopy = vec(:) 
vecCopy = 13  7  -5  2  63  8 



   

4 
 

Indexing the array vec with the indices 4:end extracts elements 4, 5, and 6; and indexing the 
array vec using the : extracts the entire array. 
 
Last modified Friday, September 18, 2020 
 

 MATLAB Marina is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. 

http://www.matlabmarina.com/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

	MATLAB Marina: Creating and Modifying Arrays
	Student Learning Objectives
	Terms
	MATLAB Functions, Keywords, and Operators
	MATLAB Arrays
	Colon Operator
	Creating 1D Arrays
	Indexing 1D Arrays
	Modifying and Removing Elements of Arrays
	Useful Reserved Words and Built in Functions for Arrays


